Role of bridging water molecules in GSK3β-inhibitor complexes: Insights from QM/MM, MD, and molecular docking studies
نویسندگان
چکیده
The role of water molecules is increasingly gaining interest in drug design, and several studies have highlighted their paramount contributions to the specificity and the affinity of ligand binding. In this study, we employ the two-layer ONIOM-based quantum mechanics/molecular mechanics (QM/MM) calculations, molecular dynamics (MD) simulations, and molecular docking studies to investigate the effect of bridging water molecules at the GSK3β-inhibitors interfaces. The results obtained from the ONIOM geometry optimization and AIM analysis corroborated the presence of bridging water molecules that form hydrogen bonds with protein side chain of Thr138 and/or backbone of Gln185, and mediate interactions with inhibitors in the 10 selected GSK3β-inhibitor complexes. Subsequently, MD simulations carried out on a representative system of 1R0E demonstrated that the bridging water molecule is stable at the GSK3β-inhibitor interface and appears to contribute to the stability of the protein-inhibitor interactions. Furthermore, molecular docking studies of GSK3β-inhibitor complexes indicated that the inhibitors can increase binding affinities and the better docked conformation of inhibitors can be obtained by inclusion of the bridging water molecules, especially for the flexible inhibitors, in docking experiments into individual protein conformations. Our results elucidate the importance of bridging water molecules at the GSK3β-inhibitor interfaces and suggest that they might prove useful in rational drug design.
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملImportance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach
The extent to which accuracy of electric charges plays a role in protein-ligand docking is investigated through development of a docking algorithm, which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations. In this algorithm, fixed charges of ligands obtained from force field parameterization are replaced by QM/MM calculations in the protein environment, treating only the ...
متن کاملComparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor.
HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this...
متن کاملMolecular Docking and Molecular Dynamics Study of DNA Minor Groove Binders
The fundamental problems in drug discovery are based on the process of molecular recognition by small molecules. The binding specificity of DNA-small molecule is identified mainly by studying the hydrogen bonding and polar interactions. Majority of the minor groove binders and their mechanism of action at the molecular level are not well studied. As these small molecules can act as effective th...
متن کاملThe Features of Protein Binding by Ruthenium Complexes: Docking, Force Field and Qm/mm Studies
The ruthenium complexes are known for their anticancer property. Some ruthenium complexes can bind with protein that may be related to the anticancer activity. The protein binding features of few ruthenium complexes have been analyzed to understand the amino acid selectivity within protein sequences. The docking, Molecular mechanics and QM/MM methods are used to predict the binding sites of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 32 9 شماره
صفحات -
تاریخ انتشار 2011